微积分
时,可采用令 (其中 为各根指数的 最小公倍数 ) lk xx , ntx n例 25 求 31 d.( 1 )xxx解 令 6tx 5d 6 d ,x t t31 d( 1 )xxx5326 d( 1 )t ttt 226 d1t tt 22116d1t tt216 d d1tt t 6 a r c t a nt t C
在平面 上的投影直线的方程 . 14 zyx九、 十、 与已知直线 1L :13523 zyx及 2L : 147510 zyx都相交且和 3L : 137182 zyx平行的直线 L . 十 一 、 设 一 平 面 垂 直 于 平 面 0z , 并 通 过 从 点)1,1,1( A到直线 L:001xzy的垂线,求此平面的方程 . 十二
量 ,不能与很小(大)的数混淆,零是唯一的无穷小的数; ( 2) 无穷多个无穷小的代数和(乘积)未必是无穷小; ( 3) 无界变量未必是无穷大 . 思考题 在自变量的同一过程中 ,无穷大的倒数为无穷小。 反之,无穷小的倒数是否一定为无穷大 . 思考题解答 不一定 . 0 是无穷小,但其倒数不存在 . 所以课本上表示为 “非零的无穷小的倒数是 无穷大” . 一、填空题 : 1 . 凡无穷小量皆以
7. ) 0 ( 3 a a x a 对于 x 是 _______ 阶无穷小 . 8. 无穷小 x cos 1 与 n mx 等价,则 . _______ _______, n m 二、求下列各极限: 1 . x x x x 3 0 sin sin tan lim ; 2 . e e lim ; 3 . x x x x
• 大学及其以上: iii XDDXYE 13021 )()1,0,|( 假定 32,其几何意义: 大学教育 保健 高中教育 支出 低于中学教育 收入• 还可将多个虚拟变量引入模型中以考察多种“定性”因素的影响。 如 在上述职工薪金的例中 , 再引入代表学历的虚拟变量 D2: iii DDXY 231210012D本科及以上学历
tX t t (a ) (b) 图 平稳时间序列与非平稳时间序 列图 • 进一步的判断 :检验样本自相关函数及其图形 定义随机时间序列的 自 相 关 函 数( autocorrelation function, ACF) 如下 : k=k/0 自相关函数是关于滞后期 k的递减函数 (Why?)。 实际上 ,对一个随机过程只有一个实现(样本),因此,只能计算 样本自相关函数 ( Sample
ba,lg bay 讨论: 通过计算得 ,10881ii ,18 36812 ii,81iiy .122lg81iii y将他们代入方程组( 3)得 . 0 8,1 2 21 0 81 8 3 6baba解这方程组,得 .8 9 6 ,0 4 3 4 kbma., km因此所求经验公式为 . 1 0 3 ey二
xxx故 02202222)1(2112)1( nnnnnnnxnx.)22)(12()1(022 nnnnnx)11( x一、 选择题 : 1 . 下列级数中 , 收敛的是 ( ). (A) 11nn; (B) 11nnn; (C) 13 21n n; (D)1)1(nn. 2 . 下列级数中 , 收敛的是 ( )
}{ 12 nb 是单调 减少的 . 又 , 对一切 223,0 nbn 成立 . 即数列 、 }{ 2nb}{ 12 nb 是有界的 . 根据“单调有界数列必有极限”的准则可知数 列 和 的极限存在 , 分别记作 b*和 b* , 即 }{2nb }{ 12 nb bbbb nnnn 122 li m,li m得两边取极限及分别对
xxx.___ ___ ___ _)112)(11( 2 xxxx.__ ___ __ __ _5 )3)(2)(1( 3 nnnnn练 习 题 ._ _ _ _ _ _ _ _ _ _23 2240 xxxxxx.__ __ __ __ __)12( )23()32( 503020 xxxx二、求下列各极限 : )21...41211(