新课标人教版(选修2-1)311空间向量及其加减运算内容摘要:
; ( 3)在正方体 中,必有 ; ( 4)若空间向量 满足 ,则 ; ( 5)空间中任意两个单位向量必相等。 其中不正确命题的个数是( ) ab、 ab| | | |ab1 1 1 1A B CD A B C D 11A C A Cm n p、 、 ,m n n p mpC变式: 如图所示,长方体中, AD=2, AA1=1, AB=3。 ( 1) 是写出与 相等的所有向量; ( 2)写出与向量 的相反向量。 AB1AA平行六面体: 平行四边形 ABCD平移向量 a到A1B1C1D1的轨迹所形成的几何体,叫做平行六面体。 A B C D A1 B1 C1 D1 A1 D1 C1 B1 B A C D 记作 ABCD— A1B1C1D1, 它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 a 化简结果的向量:列向量表达式,并标出,化简下已知平行六面体 39。 39。 39。 39。 DCBAA B CD ;⑴ BCAB 。新课标人教版(选修2-1)311空间向量及其加减运算
相关推荐
抛物线 y2 =4x 的位置关系 计算结果:得到一元二次方程,需计算判别式。 相切。 x y O 二、判断方法探讨 直线与抛物线的对称轴平行,相交与一点。 例:判断直线 y = 6 与抛物线 y2 =4x 的位置关系 计算结果:得到一元一次方程,容易解出交点坐标 x y O 二、判断方法探讨 例:判断直线 y = x 1与 抛物线 y2 =4x 的位置关系 计算结果:得到一元二次方程
的中心,求下列各式中 x、 y、 z的值: AB C D A B C D A B C D ( 1 )。 ( 2 ) .B D x A D y A B z A AA E x A D y A B z A A 9 acb定义 : 表示空间向量的有向线段所在直线互相平行或重合 , 则称这些向量叫 共线向量 .( 或平行向量 ) 思考 ⑴ :
的向量表示式 , 即 平面 由空间一点及 两个不共线 向量唯一确定 . 9 证明 : ⑴ 充分性 ∵ O P x O A y O B z O C 可变形为 ( 1 )O P y z O A y O B z O C , ∴ ( ) ( )O P O A y O B O A z O C O A ∴ AP y AB z AC ∴ 点 P 与 A B
知抛物线的方程为2 4yx, 直线 l 过定点( 2 , 1 )P , 斜率为 k , k 为何值时 , 直线 l 与抛物线2 4yx: ⑴ 只有一个公共点。 ⑵ 有两个公共点。 ⑶ 没有公共点 ? 思考 1:( 课本第 76 页例 6) 已知抛物线的方程为2 4yx, 直线 l 过定点( 2 , 1 )P , 斜率为 k , k 为何值时 , 直线 l 与抛物线2 4yx: ⑴
、 两点 ,通过点 A 和抛物线顶点的直线交抛物线的准线于点,D 求证 : 直线 DB 平行于抛物线的对称轴 . x y O A B D F l 例 过抛物线焦点 F的直线交抛物线于 A,B两点,通过点 A和抛物线顶点的直线交抛物线的准线于点 D,求证:直线 DB平行于抛物线的对称轴。 ,22 pxyx物线的方程为建立直角坐标系。 设抛轴,它的顶点为原点,轴为证明:以抛物线的对称,2)
然它也可以无限延伸,但没有渐近线; (2)、抛物线只有一条对称轴 ,没有对称中心。 (3)、抛物线只有一个顶点,一个焦点,一条准线; (4)、抛物线的离心率 e是确定的为1 , ⑸ 、抛物线的通径为 2P, 2p越大,抛物线的张口越大 . 因为抛物线关于 x轴对称,它的顶点在坐标原点,并且经过点 M(2, ), 22解 : 所以设方程为: )0(22 ppxy又因为点 M在抛物线上 :