高中数学31不等关系与不等式课件1新人教a版必修5内容摘要:
0, b 0 应用 范围 若数 (式 )的符号不明显,则作差后可化为积,商的形式 同号两数比较大小 或指数之间比较大小 步 骤 (1)作差; (2)变形; (3)判断差的符号 (4)下结论 (1)作商; (2)变形; (3)判断。高中数学31不等关系与不等式课件1新人教a版必修5
相关推荐
平方和 x2+y2取得最小值 2P . ( 2 ) 已知 x 0 , y 0 , ① 若 x+ y= S ( 和为定值 ), 则 xy ≤S24,当且仅当 x= y 时 ,积 xy 取得最大值S24。 ② 若 xy= P ( 积为定值 ), 则 x+ y ≥ 2 P ,当且仅当 x= y 时 ,和 x+ y 取得最小值 2 P . 题型一 题型二 题型三 题型一 比较大小 【例 1 】 当 a
*) ,则 M 、 N 之间的大小关系是 ( ) A . M > N B . M < N C . M = N D . M 、 N 大小关系不定 分析 : 如果用公式展开 , 计算量很大 , 且也不好比较大小 , 如何出现 2n + 1 an呢。 可利用基本不等式. 学习目标 预习导学 典例精析 栏目链接 解析 : ∵ a > 0 且 a ≠ 1 , ∴ 1 + an> 2 an, (1 + a
= . (3) 记 “ 射中环数不超过 7 环 ” 为事件 E ,则事件 E 的对立事件为 A ∪ B ∪ C . ∵ P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) = + + = , ∴ P ( E ) = 1 - P ( A ∪ B ∪ C ) = 1 - = . 本课时栏目开关 试一试 研一研 小结 求互斥事件的概率的方法有以下两种: (1)
+ y2得 2 (x2+ y2) ≥ (x + y)2⇒ x2+ y2≥( x + y )22, ② 由 ①② 即得 x4+ y4≥12122=18, ∴ x4+ y4≥18. 题型 2 用基本不等式求最值 学习目标 预习导学 典例精析 栏目链接 例 2 a > 0 , b > 0 , a + b = 4 , 求a +1a2+b +1b2的最小值. 分析 :
个发生 ,所以是对立事件 . ZHONGDIAN NANDIAN 重点难点 首 页 JICHU ZHISHI 基础知识 SUITANG LIANXI 随堂练习 探究一 探究二 探究三 探究二求互斥事件、对立事件的概率 ( 1 ) 将所求事件转化为彼此互斥的若干个事件的和 ,利用概率的加法公式求解 .在将事件拆分成若干个互斥事件时 ,注意不能重复和遗漏。 ( 2 ) 当所要拆分的事件非常繁琐
( 3 ) 每次试验总是出现这些结果中的一个 ,但在试验之前却不能确定会出现哪一个结果 .则这样的试验叫做随机试验 . 【典型例题 2 】 指出下列试验的条件和结果 : ( 1 ) 某人射击一次 , 命中的环数。 ( 2 ) 从装有大小相同但颜色不同的 a , b , c , d 这 4 个球的袋中 , 任取 1 个球。 ( 3 ) 从装有大小相同但颜色不同的 a , b , c , d 这 4