二次函数知识点梳理内容摘要:
二次函数知识点梳理 初三年级数学二次函数的基础一、考点、热点回顾二次函数知识点一、二次函数概念:1二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 2里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零二次函数的定. 二次函数 的结构特征:2 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是 2是常数, 是二次项系数, 是一次项系数, 是常数项c何 次函数的基本形式1. 二次函数基本形式: 的性质:2a 的绝对值越大,抛物线的开口越小。 2. 的性质:上加下减。 23. 的性质:左加右减。 2的符号 开口方向 顶点坐标 对称轴 性质0向上 0何轴随 的增大而增大; 时, 随0x时, 有最小值 y向下 何轴时, 随 的增大而减小; 时, 随的增大而增大; 时, 有最大值 口方向 顶点坐标 对称轴 性质0a向上 0随 的增大而增大; 时, 随0x时, 有最小值 下 何轴时, 随 的增大而减小; 时, 随的增大而增大; 时, 有最大值 口方向 顶点坐标 对称轴 性质0向上 0随 的增大而增大; 时, 随xh时, 有最小值 下 何X=随 的增大而减小; 时, 随的增大而增大; 时, 有最大值 的性质:2三、二次函数图象的平移在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”加右减,上加下减” 方法二: 沿 轴平移:向上(下)平移 个单位, 变成22(或 )2 沿轴平移:向左(右)平移 个单位, 变成 ))()( ()(2四、二次函数 与 的比较2从解析式上看, 与 是两种不同的表达形式,后者通过配方可以 ,其中 224 242何五、二次函数 图象的画法2五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口22()方向、对称轴及顶点坐标,然后在对称轴两侧,点、与 轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 ,y002h, 10何(若与 轴没有交点,则取两组关于对称轴对称的点).2口方向,对称轴,顶点,与 轴的交点,与 次函数 的性质21. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 0224何当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时,2yx符号 开口方向 顶点坐标 对称轴 性质0向上 随 的增大而增大; 时, 随xh时, 有最小值 下 何X=随 的增大而减小; 时, 随的增大而增大; 时, 有最大值 . 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 当0224何时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大2yx4次函数解析式的表示方法1. 一般式: ( , , 为常数, ) ;2. 顶点式: ( , , 为常数, ) ;()hk两根式: ( , , 是抛物线与 轴两交点的横坐标)何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示二次函数解析次函数的图象与各项系数之间的关系1. 二次项系数 , 作为二次项系数,显然 2 当 时,抛物线开口向上, 的值越大,开口越小,反之 的值越小,开口越大;0 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越大a总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决定开口的大. 一次项系数 定的前提下, 决定了抛物线的对称轴在 的前提下,0当 时, ,即抛物线的对称轴在 轴左侧;2, ,即抛物线的对称轴就是 轴;b, ,即抛物线对称轴在 轴的右侧002y 在 的前提下,结论刚好与上述相反,即当 时, ,即抛物线的对称轴在 轴右侧;, ,即抛物线的对称轴就是 轴;002, ,即抛物线对称轴在 轴的左侧b 确定的前提下, 决定了抛物线对称轴的位置称轴 在 轴左边则 ,在 轴的右侧则 ,概括的y0同右异”总结:3. 常数项 c 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;0当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ; 0 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负总结起来, 决定了抛物线与 轴交点的位置要 都确定,那么这条抛物线就是唯一确定的据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于 轴对称对称后,得到的解析式是 ; 2关于 轴对称后,得到的解析式是 ;关于 轴对称对称后,得到的解析式是 ; 2关于 轴对称后,得到的解析式是 ;关于原点对称关于原点对称后,得到的解析式是 ;2 2关于原点对称后,得到的解析式是 ;关于顶点对称(即:抛物线绕顶点旋转 180°)关于顶点对称后,得到的解析式是 ;222关于顶点对称后,得到的解析式是 2关于点 对称 称后,得到的解析式是22根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 轴交点情况):二次函数 当函数值 20y图象与 轴的交点个数: 当 时,图象与 轴交于两点 ,其中的 是24x120, , 12()x12x,一元二次方程 的两根这两点间的距离 . 20214 当 时, 图象与 轴只有一个交点; 0 当 时,图象与 轴没有交点.当 时,图象落在 轴的上方,无论 为任何实数,都有 ;1a 时,图象落在 轴的下方,无论 为任何实数,都有 2 2. 抛物线 的图象与 轴一定相交,交点坐标为 , ; y()二次函数常用解题方法总结: 求二次函数的图象与 轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数 中 , , 的符号,或由二次函数中 , ,2数形结合;c 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 轴的由对称性求出另一个交点坐标. 与二次函数有关的还有二次三项式,二次三项式 本身就是所含字母 的二次函2(0)数;下面以 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0a十一、函数的应用二次函数应用何抛物线与 轴有两次三项式的值可正、可零、可负 一元二次方程有两个不相等实根抛物线与 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根0抛物线与 轴无交次三项式的值恒为正 一元二次方程无实数根.。二次函数知识点梳理
相关推荐
活动前期准备阶段 卖场布置陈列 (活动开始的两天前必须完成) 样机如何摆放 现场 POP 如何陈列及张贴(海报、立牌、龙喜价牌、活动标志、主题横幅) 现场奖品如何陈列 各品牌的宣传物料必须贴上本次活动“科技精品大放送”的小标志,使各品牌的活动统一在这个主题中,并通过这个标志统一各品牌活动的视觉 备注:具体布置及陈列细节见所附现场 VI 规范手册 人员培训
高中数学必修1练习题集 1高中数学必修 1 练习题集第一章、集合的含义与表示例 1. 用符号 和 填空。 设集合 A 是正整数的集合,则 0_A, _A, _A;201 设集合 B 是小于 的所有实数的集合,则 2 _B,1+ _B;132 设 A 为所有亚洲国家组成的集合,则中国_A,美国_A,印度_A ,英国_. 判断下列说法是否正确,并说明理由。 某个单位里的年轻人组成一个集合; 1, ,
系文件; d. 负责制定公司检验制度,实施产品验收准则、检验规范; e. 主管公司进货、过程(半成品)、成品的检验、判定和标识; f. 主管公司计量设备维护管理和周期性计量检定的管理; g. 参与供应商评估及来料信息的处理及追溯; h. 主管纠正、预防措施的监督、评估、验证。 生产部 a. 负责产品实 现过程的控制; b. 负责产品实现过程中的标识与可追溯性控制; c. 参与编制质量手册
高中数学必修3模块测试(期末复习) 1高 中 数 学 必 修 3 模 块 测 试 (期 末 复 习 )摘 要 : 2010 年 1 月 15 日 . C 24 与 30. D 26 与30. 4 下 列 事 件 : 连 续 两 次 抛 掷 同 一 个 骰 子 , 两 次都 出 现 2 点 ; . 明 天 下 雨 ; 某 人 买 彩 票 中 奖 ; . ( 1) 设 计 一 个 包 含 循 环 结
本部门工作特点,将质量目标进行分解,并认真唐山市科锐普实业有限公司 质量手册 第 18 页 落实,以确保 公司 质量目标的实现。 各部门每月对分解的质量目标完成 情况进行统计、分析,并将结果报 办公室。 办公室 将各部门质量目标完成情况进行汇总统计,对未完成预期目标的情况进行原因分析,制定具体的纠正措施,并认真实施制定的措施。 质量管理体系策划 a) 总经理 组织编制了 公司 的质量手册
、料箱、工具柜等的浪费; ③、零件或产品变旧而不能使用的浪费; ④、放置处变得窄小; ⑤、连不要的东西也要管理的浪费; ⑥、库存管理或盘点时间的浪费。 ㈡、整顿的推行要 领 彻底地进行整理; 确定物品放置场所、方法并标识; 划线定位。 重点: ①、整顿要做到任何人,特别是新员工或其他部门都能立即取出所需要的东西; ②、对于放置处与被放置物,要能立即取出使用。 使用后要能容易归位