二次根式的化简内容摘要:
把满足上述两条件的二次根式,叫做最简二次根式 . 一般地,在二次根式的运算中,最后结果通常要求化成最简二次根式 . 1. 化简下列二次根式: 练习 1 2 4 () ; 2 2 8 () ; 3 3 2 () ; 4 5 4 ( ) .26 答 案 :27 答 案 :42 答 案 :36 答 案 : 2. 化简下列二次根式: 练习 45 1 2 () ;125 2 12 ( ) .3 102 答 案 :5 156 答 案 :小结与复习 化简时,被开方式一定要先分解成平方因子和其它因 子相乘的形式 . 当被开方式是多项式时一定要先因式 分解,化为积的形式后才能化简 . 二次根式的化简 积的算术平方根的性质: 是化简二次根式的依据之一 . = 0 0 a b a b a b ( ≥ , ≥ ).最简二次根式满足: ( 1)被开方数中不含能开得尽方的因数或因式; ( 2)被开方数中不含分母 . 二次根式的运算的最后结果要化成最简二次根式 . 习题 组 A 1. 当 x是。二次根式的化简
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
二次根式的乘除[下学期]华师大版
次根式乘法法则: 一般地有 0)b0,(a baba 二次根式与二次根式相乘,等于各被开数的积的算术平方根。 扩充: kbakba ab, 4 9 .b 公 式 中 的 字 母必 须 满 足 否 则就 没 有 意 义 了 如 就 没 有 意 义a b a b ,
二次根式复习课华师大版
次根式的有 写出 - 的一个有理化因式是 下列式子 , , , , , , 中是最简二次根式的有 使等式 = 成立的条件是 若 与 是同类二次根式,则 X= 将式子- 化简得 若 化简: = 三、关于实数与数轴: 实数的分类 有理数 无理数 (无限不循环小数) (有限小数或无限循环小数 ) 练习: ( 1)在- , , ,
二次函数第一教时课件
为 y个 ,那么请你写出 y与 x之间的关系式 . 解: ( 1) 果园里增种的 橙子树棵数、平均每棵树结的橙子、果园里橙子的总产量是 变量。 其中“果园里增种的 橙子树棵数”和“平均每棵树结的橙子”是自变量。 “果园里橙子的总产量”是因变量. ( 2)果园增种 x棵橙子树 ,那么果园共有( 100+x)棵橙子树 ,这时平均每棵树结 (6005x)个橙子 .