中职数学基础模块上册同角三角函数基本关系式2内容摘要:
③ 倒数关系: 例 1 已知 ,且 是第二象限角, 求 , , 的值. 54s in cos tan cot同角三角函数关系式的应用 解: 所以因为 ,1c o ss i n 22 259)54(1s i n1c os 222 又因为角 是第二象限角,所以 .0c o s .53259c os 从而 34)35(54c oss i nt a n 43tan1c ot 例 2 已知 ,求 的值. 178c os tan,s in解: ,1co s,0co s 且因为,1715)178(1c os1s i n 22 所以 是第二或第三象限角 . 如果 是第二象限角,那么 .815t a n 15sin ,17 .815)817(1715c oss i nt a n 如果 是第三象限角,那么 为什么。 反馈练习 1:。中职数学基础模块上册同角三角函数基本关系式2
相关推荐
3}=(, 3)∪ (3, +) . 就是表示数轴上到原点的距离大于 3的点的集合. 想一想 0 a a x {x|a x a} {x|x a 或 x a} 如果 a 0,那么 ︱ x︱ a ︱ x︱ a a = 0或 a 0时上述结果还成立吗 ? 为什么 ? 解下列不等式 : ( 1) |x| 5; ( 2) |x|- 3 0; ( 3) 3|x| 12. 例 1 解不等式
4l o g 8 90 . 4 .思考:你发现了什么。 l og .a NaN 探究活动 求下列各式的值: 43l o g 3。 50. 9l og 0. 9。 8l n .e思考:你发现了什么。 l og .ba ab ( 1) 负数和零没有对数 ( ∵ 在指数式中 N 0 ) ( 2) 0 1 log a ( 3) 1 a a log 即: 1的对数是 0 即:底数的对数是 1
0 ) 练习 2 ( 1) 8 0 = ; ( 2) (- ) 0 = ; ( 3)式子 ( a- b ) 0 = 1 是否恒成立。 为什么。 计算: ( 1) = ; 23 24 = 23- 4 = 2- 1 1 2 如果取消 = am- n(m> n, a≠0)中 m> n的 限制,如何通过指数的运算来表示。 am an 2- 1 = 1 2 a- 1= ( a≠0) 1 a 规 定 (
si ns i n c os t a n sinc osta n2221 c o sta nc o s222s inta n1 s in在公式应用中 ,不仅要注意公式的正用 ,还要注意公式的逆用和变用 . 4s in5 例 1:已知 ,且 α是第二象限角, 求 cosα, tanα的值。 变形 1:已知 ,求 的值。 3si n 5 c
数轴表示 符号 名称 定义 a b a b a b 知识探究(二) 思考 1: 变量 x相对于常数 a有哪几种大小关系。 用不等式怎样表示。 思考 2: 满足不等式 的实数 x的集合也可以看成区间,那么这些集合如何用区间符号表示。 , , ,x a x a x a x a [a, +∞) , (a, +∞) , (∞ , a], (∞ , a). 思考 3: 将实数集
x≤4; ( 3)- 2≤x< 3; ( 4)- 3< x< 4; ( 5) x> 3; ( 6) x≤4. ( 2) (- ∞, ] . 三、例题解析 小组讨论练习 例 2 用集合的性质描述法表示下列区间: 解:( 1) { x | - 4< x< 0}; ( 2) { x | - 8< x≤7}. 用集合的性质描述法表示下列区间,并在数轴上表示之 . ( 1) [- 1, 2); ( 2)