高中数学北师大版选修2-1第三章12类比推理内容摘要:

球 圆心与弦 (非直径 )中点的连线垂直于弦 球心与截面 (不经过球心的小圆面 )圆心的连线垂直于截面 与圆心距离相等的两条弦长相等 与球心距离相等的两个截面的面积相等 圆的周长 C= πd 球的表面积 S= πd2 圆的面积 S= πr2 球的体积 V= πr3 43 [一点通 ] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下: 平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积 面积 体积 三角形 四面体 线线角 面面角 平行四边形 平行六面体 圆 球 1.平面内平行于同一直线的两直线平行,由此类比我们可 以得到 ( ) A.空间中平行于同一直线的两直线平行 B.空间中平行于同一平面的两直线平行 C.空间中平行于同一直线的两平面平行 D.空间中平行于同一平面的两平面平行 解析: 利用类比推理,平面中的直线和空间中的平面 类比. 答案: D 2 .已知扇形的弧长为 l,半径为 r ,类比三角形的面积公式: S =底 高2,可推知扇形面积公式 S 扇 = ( ) A.r22 B。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。