用delphi实现基于马氏链的股票走势分析技术的研究毕业论文(编辑修改稿)内容摘要:

发生的概率是 a/(a+b+c);涨→稳发生的概率是 b/(a+b+c) ;… ;跌→跌发生的概率是 i/(g+h+i)。 可以构造一次转移概率矩阵,这个矩阵是9种可能性概率组合 [2]: a/(a+b+c) b/(a+b+c) c/(a+b+c) d/(d+e+f) e/(d+e+f) f/(d+e+f) g/(g+h+i) h/(g+h+i) i/(g+h+i) 现假设该矩阵为 P。 若系统在时刻 tm处于状态 i,经过 n步转移,在 tn时刻处于状态j,那么设 n 步转移后的概率矩阵为P ij( n)。 即有 Pij(n)=P n。 第 5 页 共 15 页 第 2 章 主要设计步骤 步骤1 为获取连续 60天的股票收盘价格,运用控件数组 [8]的方法作为实现的工具,通过定义控件数组将连续 60 天的样本直接输入至编辑框中。 在这个过程中充分考虑了输入值的合理性问题,即由于股票价格是数值型数据,可在编辑框的键盘按下事件中加入限制条件,以使得用户避免输入非数值型数据。 步骤2 为了引入区间估计,在区间划 分的临界点的选取上采用标准差、方差、变异系数三个离散型数据特征和 0来表示。 这是由于当样本空间的方差小于 1的时候,标准差大于方差,而当样本空间的方差大于 1的时候,标准差小于方差。 不同的股票价格样本数据有不同的方差和标准差,因此从程序的实用性角度考虑,临界点的选取不能简单采用某个常数。 任取一支股票,样本空间为连续 60 天的该股票的当日收盘价格,并通过计算公式可分别得出该样本的标准差、方差、变异系数的值。 并将这些数字特征的值和 0分别赋给变量 avg,即用 avg 作为临界点来划分区间。 步骤3 用 Xi代表第 i 日该股票的收盘价格(其中 i∈ {1,2,… 60}),循环比较Xi到 Xi+1以及 Xi+1到 Xi+2两个状态,以确定 9 种情况各发生的次数。 步骤是在程序中设置 a… i 共 9 个计数器变量,若满足 9种情况之一则相应的计数器加 1。 那么在 i等于58 退出循环体时得到的计数器的值就是 9种情况所分别发生的次数。 最后将这些值代入计算可得一次概率转移矩阵 P的实际值。 在此过程中,考虑到矩阵 P中任何一个元素的分母可能为0的情况(即该元素所对应的 3个计数器值都为 0),所以必须用条件语句加以限制。 若分母不为 0,把矩阵元素的值输出至标签; 如果分母为0,则将0赋给相应的标签输出。 步骤4 对 X59与 X60进行比较,比较的结果作为初始状态且构建初始分布向量,把对应的初始分布向量与一次概率转移矩阵相乘即为预测的概率。 例如:若初始状态为涨,则将向量 (1, 0, 0)与一次概率转移矩阵 P 相乘的结果输出至标签。 初始状态为稳,将 (0, 1, 0) P赋给标签。 为跌,对应的标签输出为 (0, 0, 1) P。 这样做是为了让标签的输出更加清晰明了,根据第一状态的实际情况选择对应的标签输出,而其他标签不作输出。 步骤5 为了能够更新样本数据,避免用户每次重新输入股票价格的麻 烦。 须考虑程序的动态更新功能 [9]。 采用循环覆盖的方法对股票价格进行动态更新,即采用循 第 6 页 共 15 页 环语句对整个样本数据进行遍历,并将后一天编辑框中的数据覆盖前一天的编辑框内的数据,这样第 1天的数据将被抹去,再把第 60 天的编辑框清空。 步骤 6 在得到 P 之后,利用公式 P P P4,可以分别得到二步、三步、四步预测的概率,最后通过标签输出结果。 第 7 页 共 15 页 第 3 章 实验结果及分析 以华电国际(股票代码: 600027)从 20xx 年 9 月 10 号起,连续 63 个交易日实例进行分析。 原始资料见表1 序号 1 2 3 4 5 6 7 8 9 10 收盘价 序号 11 12 13 14 15 16 17 18 19 20 收盘价 序号 21 22 23 24 25 26 27 28 29 30 收盘价 序号 31 32 33 34 35 36 37 38 39 40 收盘价 序号 41 42 43 44 45 46 47 48 49 50 收盘价。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。