基于matlab的倒立摆pid控制系统设计毕业论文(编辑修改稿)内容摘要:
的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。 下面我们采用 16 其中的牛顿-欧拉方法 建立直线型一级倒立摆系统的数学模型。 微分方程的推导 在忽略了空气阻力,各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图 图 3 . 4 直 线 一 级 倒 立 摆 系 统 我们不妨做以下假设: M小车质量、 m摆杆质量、 b小车摩擦系数、 l摆杆转动轴心到杆质心的长度、 I 摆杆惯、 F加在小车上的力、 x 小车位置、φ摆杆与垂直向上方向的夹角、θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。 图 分析图。 其中, N 和 P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向: 图 3 . 5 ( a ) 小 车 隔 离 受 力 图 ( b ) 摆 杆 隔 离 受 力 图 分析小车水平方向所受的合力,可以得到以下方程: NxbFxM ( ) 17 由摆杆水平方向的受力进行分析可以得到下面等式: s in122 lkdmN 即 : s inc os 2 mlmlxmN ( ) 把这个等式代入上式中,就得到系统的第一个运动方程: FmlmxbxMm s i nc o s 2 ( ) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: co s22 ldtdmmgP 即: c o ss in 2 mlmlmgP () 力矩平衡方程如下: INlPl c oss in () 方程中力矩的方向,由于 s ins in,c o sc o s, ,故等式前面有负号。 合并这两个方程,约去 P和 N,得到第二个运动方程: c o ss in2 xmlm g lmlI () 设 (φ是摆杆与垂直向上方向之间的夹角),假设φ与 1(单位 是 弧 度 ) 相 比 很 小 , 即 φ 《 1 , 则 可 以 进 行 近 似 处理:。 用 u 代表被控对象的输入力 F , 线性化后两个运动方程如下: umlxbxmM xmlm g lmlI 2 () 传递函数 对方程组 ()进行拉普拉斯变换,得到 sUssmlssbXssXmM ssml Xsmg lssmlI22222 () 注意 :推导传递函数时假设初始条件为 0。 0,s in,1c os 2 dtd 18 由于输出为角度φ,求解方程组 ()的第一个方程,可以得到: ssgmlmlIsX 22)( () 把上式代入方程组 ()的第二个方程,得到: sUssmlsssgml mlIbsssgml mlImM 22222 () 整理后得到传递函数: sqb m g lsqm g lmMsqmlIbssqmlsUs23242 () 其中: 22 mlmlIMmq 状态空间结构方程 系统状态空间方程为 DnCXy BuAXx () 方程组( )对 ,x 解代数方程,得到解如下: uM m lmMImlM m lmMImMmglxM m lmMIm l buM m lmMImlIM m lmMIglmxM m lmMIbmlIxxx2222222222)()()( () 整理后得到系统状态空间方程: 19 2 2222222220 1 0 0 00000 0 0 100I m l bxx I m lm g lI M m M m lI M m M m l I M m M m lumlm g l M mm lbI M m M m lI M m M m l I M m M m l ( ) uxxxy0000000001 ( ) 由公式 ()的第一个方程为: xmlm g lmlI 2 () 对于质量均匀分布的摆杆有: 231mlI () 于是可以得到: xmlm g lmlml 2231 () 化简得到: xllg 4343 () 设 xuxxX , ,则有: uxxxyulxxlgxx00010000014301004300100000000010 () 实际的系统模型如下: M 小车质量 Kg 20 m 摆杆质量 Kg b 小车摩擦系数 0 .1N/m/sec l 摆杆转动轴心到杆质心的长度 5m I 摆杆惯量 kg*m*m T 采样频率 注意:在进行实际系统的 MATLAB仿真时,我们将采样频率改为实际系统的采样频率。 我们的在实际操作中自行检查系统参数是否与实际系统相符,否则的改用实际参数进行实验。 实际系统模型 把 上述参数代入,可以得到系统的实际模型 摆杆角度和小车位移的传递函数: 267 21 027 22 s ssX s () 摆杆角度和小车加速度之间的传递函数为: 2 ssV s () 摆杆角度和小车所受外界作用力的传递函数: 3 0 9 4 1 6 8 8 3 1 6 3 5 6 5 23 sss ssU s () 以外界作用力作为输入的系统状态方程: uxxxyuxxxx00010000013 5 6 5 08 8 3 1 6 008 2 8 2 5 6 5 100006 2 9 3 1 8 8 3 1 6 0010 () 以小车加速度作为输入的系统状态方程: 21 uxxxx3010100000000010 uxxxy 0001000001 ( ) 需要说明的是,在固高科技所有提供的控制器设计和程序中,采用的都是以小车的加速度作为系 统的输入,如果、用户需要采用力矩控制的方法,可以参考以上把外界作用力作为输入的各式。 采用 MATLAB 语句形式进行仿真 图 仿真程序如图 22 可得仿真曲线和结果如图 图 图 23 四、 PID 控制理论 PID 控制概述 在工业自动化设备中,常采用由比例、积分、微分控制策略形成的校正装置作为系统的控制器。 自从计算机进入控制领域以来,用数字计算机代替模拟计算机调节器组成计算机 控制系统,不仅可以用软件实现 PID控制算法,而且可以利用计算机的逻辑功能,使 PID控制更加灵活。 数字 PID控制在生产过程中是一种最为普遍的控制方法,将偏差的比例、积分、和微分通过线性组合构成控制量,对被控对象进行控制,故称为 PID控制器。 当今的自动控制技术都是基于反馈的概念。 反馈理论的要素包括三个部分:测量、比较和执行。 测量关心的变量,。基于matlab的倒立摆pid控制系统设计毕业论文(编辑修改稿)
相关推荐
进制数据流的偶数序列组成。 下面的 a 是 Idata, b 就是 Qdata,它们分布与各自的载波相乘分别输出 I 路信号和 Q 路信号。 I 路信号加上 Q路信 7 号就是 QPSK 输出信号。 当 I 路载波信号是 0相位时为 1,是 180176。 相位时为 0;当 Q 路载波信号是 0相位时为 1,是 180176。 相位时为 0。 1 0 1 2 3 4 5 6 7 8101a序列1
以采用鼠标操作进行对弈; 2) 可以实现走 棋 、悔棋、还原 、认输 功能 ; 3) 可以满足两人 局域网内 对弈; 4) 可以在任意时间重新开始游戏; 5) 可以进行简单错误判断,并直接返回到前一步棋子状态; 6) 可以进行背景棋盘和棋子种类的变换; 7) 可以实现自由设置棋谱(怪棋); 8) 可以实现棋子黏在鼠标上移动,增加美感 淮阴师范学院毕业论文(设计) 10 软件信息 1) 软件名称
( 6) IIR 滤波器主要是设计规格化,频率特性为分段常数的标准低通,高通,带通和带阻滤波器。 FIR 滤波器则灵活很多,例如:频率采样法可适应各种幅度特性和相位特性的要求,因此 FIR 滤波器可设计出理想正交变换器,理想微分器,线性调频器等各种网络,适应性很广,而且,目前已经有很多 FIR 滤波器的计算机程序可供使用。 表 21 两种滤波器特点比较分析 FIR滤波器 IIR滤波器 设计方法
多种图像格式文件。 数字图像处理及过程 图像是人类获取信息、表达信息和传递信息的重要 手段。 利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。 数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。 数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。
该依靠高版本的优化功能把在低版本不能实现的功能强制执行,所以我还有很多地方需要学习,包括对误码率进行计算的两个函数我也是借鉴的网上的程序。 这次方向设计让我学会了很多,也认识到了自己还有很多方面的欠缺。 八、 参考文献 [1] 李人厚 、 张平安 .精通 MATLAB, 西安交通大学 [2] 肖明波,通信系统仿真原理与无线应用 机械工业出版社 [3] 万永革编著 ,通信系统仿真原理与无线应用 ,
(in4 is in4mf1) then (out is mf1) (1) 2. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is in3mf1) and (in4 is in4mf2) then (out is mf2) (1) 3. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is