线性规划二一内容摘要:

返回 2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈ N* y≥0 y∈ N* 例题分析 x 0 y 2x+y=15 x+3y=27 x+2y=18 x+y =0 直线 x+y=12经过的整点是 B(3,9)和 C(4,8), 它们是最优解 . 作出一组平行直线 z = x+y, 目标函数 z = x+y 返回 C(4,8) A(18/5,39/5) 当直线经过点 A时 z=x+y=,但它不是最优整数解 .作直线 x+y=12 x+y=12 解得交点 B,D的坐标 B(3,9)和 D(,) 调整优值法 B(3,9) D(,) 15 18 27 9 2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈ N* y≥0 y∈ N* 返回 分析 :将已知数据列成下表 : 设生产甲 、 乙两种产品 .分别为 x吨 、 y吨 ,利润总额为 z元 ,那么 z=600x+1000y. 4x+9y≤360 10x+4y≤300 5x+4y≤200 x≥0 y ≥0 10 5 4 300 200 4 产 品 消耗量 A种矿石 (t) B种矿石 (t) 甲产品 资 源 乙产品 资源限制。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。