inasynapticallycoupledfhnneuronmodel内容摘要:
, then the system (1) undergos a Hopf bifurcation at (0,0,0,0) when 02 0r 0r 00r 0 321* , yyyy 0* y 0)( * yh01 ],0[ 01 0)( *39。 kyh).,2,1,0(,11 jjk and Hopf bifurcation for FHN neuron model with two delay Now let ,*11 ,02 )0( wiw be a root of Eq.(2) Then we get .0s i nc o s,0s i nc o s21223222124wEFwEFCwAwwEFwEFDBww(16) Where ],s i n)(c o s)[( *121*12121 wwbbwbbwF ].s i n)(c o s)[( *1212*1212 wbbbbF Taking square on the both sides of the equations of (14), we get (15) 02)22()2( 222212222342628 FEFEDwCB D wwACDBwBAw (15) If Eq.(15) has positive root, without loss of generality , we assume Eq.(15) has N positive roots, denoted by。 Notice Eq.( 12)we get 2,1,0,0s i n),2)a r c c o s ( c o s2(10s i n),2)s( a r c c o s ( c o122222 jwjwwwjwwiiiiiiiiiiji (16) Define .Let be the root of Eq.(4) Satisfying . By putation, we get }{m in )0(2},...2,1{)0(202 iNii 00 i )()()( 222 ivijij i ww )(,0)( 221 1202220214002*10021302121502102*10202121402121602)(2102)(2123)(210239。 )2()(s i n]3)(2[)](43[)(c o s)](2[]42)(3[4)))(()2(234))((R e ()(02*102*102*1EwbwbwwwbCbwCbAbbbBwbbAwwbbCbBbwbbBbbAwebbEebbECBAebbE Where Summarizing the discussions above, we have the following conclusions. 0)(,0])([ 0239。 202221402221602 wbbwbbwE Theorem Suppose that (H), hold and Eq.(14) has positive roots. and have the same meaning as last definition. We get (1) All root of Eq.(4) have negative real parts for and the equilibrium of system (2) is asymptotically stable for . (2) If hold , then system (2) undergos a Hopf bifurcation at the equilibrium E, when . I *11 02)( 0239。 ),0( 022 )0,0,0,0(E0)( 0239。 022 and direction of the Hopf bifurcation In the previous section, we obtained conditions for Hopf bifurcation to occur when . In this section we study the direction of the Hopf bifurcation and the stability of the bifurcation periodic solutions when , using techniques from normal form and center manifold theory. 022 022 We assume 02*1 Letting R ,022and dropping the bars for simplification ),(dt )(d tt XFXLtX ( 17) Where CtXX t )()( and 3: RCL 3: RCRF ),()()0( 022*111 tttt XBXBXAXL (18) Where TTtttt txtxtxtxxxxx ))(),(),(),(())(),(),(),(( 43214321 .0)(3)0(0)(3)0(0)(3)(0)(3)(),(。inasynapticallycoupledfhnneuronmodel
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。