汽车连杆零件加工工艺及夹具设计毕业设计说明书(编辑修改稿)内容摘要:
加工及大、小头孔的精加工。 如果按连杆合装前后来分,合装之前的工艺路线属主要表面的粗加工阶段,合装之后的工艺路线则为主要表面的半精加工、精加工阶段。 连杆的机械加工工艺过程分析 工艺过程的安排 在连杆加工中有两个主要因素影响加工精度: ( 1)连杆本身的刚度比较低,在外力(切削力、夹紧力)的作用下容易变形。 ( 2)连杆是模锻件,孔的加工余量大,切削时将产生较大的残余内应力,并引起内应力重新分布。 因此,在安排工艺进程时,就要把各主要表面的粗、精加工工序分开,即把粗加工安排在前,半精加工安排在中间,精加工安排在后面。 这是由于粗加工工序的切削余量大,因此切削力、夹紧力必然大,加工后容易产生变形。 粗、精加工分开后,粗加工产生的变形可以在半精加工中 修正;半精加工中产生的变形可以在精加工中修正。 这样逐步减少加工余量,切削力及内应力的作用,逐步修正加工后的变形,就能最后达到零件的技术条件。 各主要表面的工序安排如下: ( 1)两端面:粗铣、精铣、粗磨、精磨 ( 2)小头孔:钻孔、扩孔、铰孔、精镗、压入衬套后再精镗 ( 3)大头孔:扩孔、粗镗、半精镗、精镗、金刚镗、珩磨 一些次要表面的加工,则视需要和可能安排在工艺过程的中间或后面。 兰州工业学院毕业设计说明书(论文) 16 定位基准的选择 在连杆机械加工工艺过程中,大部分工序选用连杆的一个指定的端面和小头孔作为主要基面,并用大头处指定一侧的 外表面作为另一基面。 这是由于:端面的面积大,定位比较稳定,用小头孔定位可直接控制大、小头孔的中心距。 这样就使各工序中的定位基准统一起来,减少了定位误差。 具体的办法是,如图( 1— 5)所示:在安装工件时,注意将成套编号标记的一面不 图( 15)连杆的定位方向 与夹具的定位元件接触(在设计夹具时亦作相应的考虑)。 在精镗小头孔(及精镗小头衬套孔)时,也用小头孔(及衬套孔)作为基面,这时将定位销做成活动的称“假销”。 当连杆用小头孔(及衬套孔)定位夹紧后,再从小头孔中抽出假销进行加工。 为了不断改善基面的精度,基面 的加工与主要表面的加工要适当配合:即在粗加工大、小头孔前,粗磨端面,在精镗大、小头孔前,精磨端面。 由于用小头孔和大头孔外侧面作基面,所以这些表面的加工安排得兰州工业学院毕业设计说明书(论文) 17 比较早。 在小头孔作为定位基面前的加工工序是钻孔、扩孔和铰孔,这些工序对于铰后的孔与端面的垂直度不易保证,有时会影响到后续工序的加工精度。 在第一道工序中,工件的各个表面都是毛坯表面,定位和夹紧的条件都较差,而加工余量和切削力都较大,如果再遇上工件本身的刚性差,则对加工精度会有很大影响。 因此,第一道工序的定位和夹紧方法的选择,对于整个工艺过程的加工精度常 有深远的影响。 连杆的加工就是如此,在连杆加工工艺路线中,在精加工主要表面开始前,先粗铣两个端面,其中粗磨端面又是以毛坯端面定位。 因此,粗铣就是关键工序。 在粗铣中工件如何定位呢。 一个方法是以毛坯端面定位,在侧面和端部夹紧,粗铣一个端面后,翻身以铣好的面定位,铣另一个毛坯面。 但是由于毛坯面不平整,连杆的刚性差,定位夹紧时工件可能变形,粗铣后,端面似乎平整了,一放松,工件又恢复变形,影响后续工序的定位精度。 另一方面是以连杆的大头外形及连杆身的对称面定位。 这种定位方法使工件在夹紧时的变形较小,同时可以铣工件的端面, 使一部分切削力互相抵消,易于得到平面度较好的平面。 同时,由于是以对称面定位,毛坯在加工后的外形偏差也比较小。 确定合理的夹紧方法 既然连杆是一个刚性比较差的工件,就应该十分注意夹紧力的大小,作用力的方向及着力点的选择,避免因受夹紧力的作用而产生变形,以影响加工精度。 在加工连杆的夹具中,可以看出设计人员注意了夹紧力的作用方向和着力点的选择。 在粗铣两端面的夹具中,夹紧力的方向与端面平行,在夹紧力的作用方向上,大头端部与小头端部的刚性高,变形小,既使有一些变形,亦产生在平行于端面的方向上,很少或不会影响端面的平面度。 夹紧力通过工件直接作用在定位元件上,可避免工件产生弯曲或扭转变形。 在加工大小头孔工序中,主要夹紧力垂直作用于大头端面上,并 定兰州工业学院毕业设计说明书(论文) 18 位元件承受,以保证所加工孔的圆度。 在精镗大小头孔时,只以大平面(基面)定位,并且只夹紧大头这一端。 小头一端以假销定位后,用螺钉在另一侧面夹紧。 小头一端不在端面上定位夹紧,避免可能产生的变形。 由 连杆两端面的加工 采用粗铣、精铣、粗磨、精磨四道工序,并将精磨工序安排在精加工大、小头孔之前,以便改善基面的平面度,提高孔的加工精度。 粗磨在转盘磨床上,使用砂瓦拼成 的砂轮端面磨削。 这种方法的生产率较高。 精磨在 M7130 型平面磨床上用砂轮的周边磨削,这种办法的生产率低一些,但精度较高。 连杆大、小头孔的加工 连杆大、小头孔的加工是连杆机械加工的重要工序,它的加工精度对连杆质量有较大的影响。 小头孔是定位基面,在用作定位基面之前,它经过了钻、扩、铰三道工序。 钻时以小头孔外形定位,这样可以保证加工后的孔与外圆的同轴度误差较小。 小头孔在钻、扩、铰后,在金刚镗床上与大头孔同时精镗,达到 IT6级公差等级,然后压入衬套,再以衬套内孔定位精镗大头孔。 由于衬套的内孔与外圆 存在同轴度误差,这种定位方法有可能使精镗后的衬套孔与大头孔的中心距超差。 大头孔经过扩、粗镗、半精镗、精镗、金刚镗和珩磨达到 IT6 级公差等级。 表面粗糙度 Ra 为 m,大头孔的加工方法是在铣开工序后,将连杆与连杆体组合在一起,然后进行精镗大头孔的工序。 这样,在铣开以后可能产生的变形,可以在最后精镗工序中得到修正,以保证孔的形状精度。 兰州工业学院毕业设计说明书(论文) 19 连杆螺栓孔的加工 连杆的螺栓孔经过钻、扩、铰工序。 加工时以大头端面、小头孔及大头一侧面定位。 为了使两螺栓孔在两个互相垂直方向平行度保持在公差范围内,在扩和铰两 个工步中用上下双导向套导向。 从而达到所需要的技术要求。 粗铣螺栓孔端面采用工件翻身的方法,这样铣夹具没有活动部分,能保证承受较大的铣削力。 精铣时,为了保证螺栓孔的两个端面与连杆大头端面垂直,使用两工位夹具。 连杆在夹具的工位上铣完一个螺栓孔的两端面后,夹具上的定位板带着工件旋转 1800 ,铣另一个螺栓孔的两端面。 这样,螺栓孔两端面与大头孔端面的垂直度就由夹具保证。 连杆体与连杆盖的铣开工序 剖分面(亦称结合面)的尺寸精度和位置精度由夹具本身的制造精度及对刀精度来保证。 为了保证铣开后的剖分面的平面度 不超过规定的公差 ,并且剖分面与大头孔端面保证一定的垂直度,除夹具本身要保证精度外,锯片的安装精度的影响也很大。 如果锯片的端面圆跳动不超过 mm,则铣开的剖分面能达到图纸的要求,否则可能超差。 但剖分面本身的平面度、粗糙度对连杆盖、连杆体装配后的结合强度有较大的影响。 因此,在剖分面铣开以后再经过磨削加工。 大头侧面的加工 以基面及小头孔定位,它用一个圆销(小头孔)。 装夹工件铣两侧面至尺寸,保证对称(此对称平面为工艺用基准面)。 连杆加工工艺设计应考虑的问题 工序安排 连杆加工工序安排应注意两个影响精度的因素:( 1)连杆的刚度比较低,在外力作用下容易变形;( 2)连杆是模锻件,孔的加工余量大,兰州工业学院毕业设计说明书(论文) 20 切削时会产生较大的残余内应力。 因此在连杆加工工艺中,各主要表面的粗精加工工序一定要分开。 定位基准 精基准:以杆身对称面定位,便于保证对称度的要求,而且采用双面铣,可使部分切削力抵消。 统一精基准:以大小头端面,小头孔、大头孔一侧面定位。 因为端面的面积大,定位稳定可靠;用小头孔定位可直接控制大小头孔的中心距。 夹具使用 应具备适应“一面一孔一凸台”的统 一精基准。 而大小头定位销是一次装夹中镗出,故须考虑“自为基准”情况,这时小头定位销应做成活动的,当连杆定位装夹后,再抽出定位销进行加工。 保证螺栓孔与螺栓端面的垂直度。 为此,精铣端面时,夹具可考虑重复定位情况,如采用夹具限制 7 个自由度(其是长圆柱销限制 4 个,长菱形销限制 2 个)。 长销定位目的就在于保证垂直度。 但由于重复定位装御有困难,因此要求夹具制造精度较高,且采取一定措施,一方面长圆柱销削去一边,另一方面设计顶出工件的装置。 切削用量的选择原则 正确地选择切削用量,对提高切削效率,保证必要的刀具耐用 度和经济性,保证加工质量,具有重要的作用。 粗加工时切削用量的选择原则 粗加工时加工精度与表面粗糙度要求不高 ,毛坯余量较大。 因此,选择粗加工的切削用量时,要尽可能保证较高的单位时间金属切削量(金属切除率)和必要的刀具耐用度,以提高生产效率和降低加工成本。 金属切除率可以用下式计算: Zw ≈ 兰州工业学院毕业设计说明书(论文) 21 式中: Zw 单位时间内的金属切除量( mm3/s) V 切削速度( m/s) f 进给量( mm/r) ap 切削深度( mm) 提高切削速度、增大进给量和切削深度,都能提高金属切除率。 但是,在这 三个因素中,影响刀具耐用度最大的是切削速度,其次是进给量,影响最小的是切削深度。 所以粗加工切削用量的选择原则是:首先考虑选择一个尽可能大的吃刀深度 ap,其次选择一个较大的进给量度 f,最后确定一个合适的切削速度 V. 选用较大的 ap 和 f 以后,刀具耐用度 t 显然也会下降,但要比 V 对t的影响小得多,只要稍微降低一下 V 便可以使 t回升到规定的合理数值,因此,能使 V、 f、 ap 的乘积较大,从而保证较高的金属切除率。 此外,增大 ap 可使走刀次数减少,增大 f 又有利于断屑。 因此,根据以上原则选择粗加工切削用量对提高生产效率,减少刀 具消耗,降低加工成本是比较有利的。 1)切削深度的选择: 粗加工时切削深度应根据工件的加工余量和由机床、夹具、刀具和工件组成的工艺系统的刚性来确定。 在保留半精加工、精加工必要余量的前提下,应当尽量将粗加工余量一次切除。 只有当总加工余量太大,一次切不完时,才考虑分几次走刀。 2)进给量的选择: 粗加工时限制进给量提高的因素主要是切削力。 因此,进给量应根据工艺系统的刚性和强度来确定。 选择进给量时应考虑到机床进给机构的强度、刀杆尺寸、刀片厚度、工件的直径和长度等。 在工艺系统的刚性和强度好的情况下,可选用大一些的进 给量;在刚性和强度较差的情况下,应适当减小进给量。 3)切削速度的选择: 兰州工业学院毕业设计说明书(论文) 22 粗加工时,切削速度主要受刀具耐用度和机床功率的限制。 切削深度、进给量和切削速度三者决定了切削功率,在确定切削速度时必须考虑到机床的许用功率。 如超过了机床的许用功率,则应适当降低切削速度。 精加工时切削用量的选择原则 精加工时加工精度和表面质量要求较高,加工余量要小且均匀。 因此,选择精加工的切削用量时应先考虑如何保证加工质量,并在此基础上尽量提高生产效率。 1)切削深度的选择: 精加工时的切削深度应根据粗加工留下的余量确定。 通常希望精加工余量不要留得太大,否则,当吃刀深度较大时,切削力增加较显著,影响加工质量。 2)进给量的选择: 精加工时限制进给量提高的主要因素是表面粗糙度。 进给量增大时,虽有利于断屑,但残留面积高度增大,切削力上升,表面质量下降。 3)切削速度的选择: 切削速度提高时,切削变形减小,切削力有所下降,而且不会产生积屑瘤和鳞刺。 一般选用切削性能高的刀具材料和合理的几何参数,尽可能提高切削速度。 只有当切削速度受到工艺条件限制而不能提高时,才选用低速,以避开积屑瘤产生的范围。 由此可见,精加工时选用较小的吃刀深度 ap 和进给量 f,并在保证合理刀具耐用度的前提下,选取尽可能高的切削速度 V,以保证加工精度和表面质量,同时满足生产率的要求。 确定各工序的加工余量、计算工序尺寸及公差 确定加工余量 用查表法确定机械加工余量: 兰州工业学院毕业设计说明书(论文) 23 (根据《机械加工工艺手册》第一卷 表 — 25 表 — 26 表— 27) ( 1)、平面加工的工序余量( mm) 单面加工方法 单面余量 经济精度 工序尺寸 表面粗糙度 毛坯 43 粗铣 IT12( ) 40( ) 精铣 IT10( 0 ) ( ) 粗磨 IT8( 0 ) ( ) 精磨 IT7( 0 ) 38( ) 则连杆 两端面总的加工余量为: A 总 = 21 ni iA =( A 粗铣 +A 精铣 +A 粗磨 +A 精磨 ) 2 =( +++) 2 = mm ( 2)、连杆铸造出来的总的厚度为 H=38+ = 0 mm 确定工序尺寸及其公差 (根据《机械制造技术基础课 程设计指导教程》 表 2— 29 表 2— 34) 1)、大头孔各工序尺寸及其公差(铸造出来的大头孔为 55 mm) 工序名称 工序基 本余量 工序经济 精度 工序。汽车连杆零件加工工艺及夹具设计毕业设计说明书(编辑修改稿)
相关推荐
46684 46277 罐式汽车 15953 15595 23544 23153 起重汽车 7694 7534 12540 12091 仓栅汽车 427 423 2522 2526 特种汽车 4505 4530 5778 5645 其它改装车 5495 5498 3792 3806 半挂车 46330 45472 52893 53084 虽然目前我国生产专用汽车 已 具有一定的生产规模
久陵在《汽配城的阳光大道》一文中 ,提出面对入世的挑战 , 汽配城必须进行大的变革。 要改变只做 “房东”的 营销 思路 , 把重点转移到组织全城的商家进行规模 营销 上来 , 沿着售后的链条在往下延伸 , 积极参与全球采购。 从而把汽配城发展成为大批发、大连锁、销售与维修相结合的综合性有品牌特色的大型售后服务市场。 朱付先在《整顿规范是汽配市场走向真正繁荣的原动力》一文中 ,
由 Rod Johnson 创建,主要是为了解决企业应用开发的复杂性而创建的。 Spring 使用基本的 JavaBean 来完成以前只能由 EJB 完成的事情。 然而, Spring 的用途不仅限于服务器的开发。 从简单性、可测试性和松耦合的角度而言,任何 Java 应用都可以从 Spring 中受益。 ( 3) Hibernate: Hibernate 是一个开源的对象关系映射框架,它对
汽车轮边减速器运动仿真与分析 3 ( 3)将 CATIA 中的连杆模型导入到 ANSYS 里面,对该杆件进行参数的设定,网格的划分,并且对杆件进行模态分析,得到连杆的各阶振型及频率。 重庆理工大学 汽车轮边减速器运动仿真与分析 4 第二章 . 行星齿轮轮边减速器工作原理 行星齿轮轮边减速器结构结构 由于轮边减速器大多采用单级行星齿轮形式,故本文仿真与分析均是以单级行星齿轮减速器为模型。
低了汽车生产、运营成本;大量新车超低价上市,新老车型竞争更加激烈,多样化选择使消费者观望心态趋强,增加了价格下降的压力;目前国内汽车行业的利润率还是远远高于国际平均水平,国际资本还会源源不断地流入,价格下降在所难免。 汽车消费将呈现梯度发展的趋势。 从产品生命周期角度看,目前国内汽车业已进入成长期,率先买车的是最高收入群体,此时中心城市增长会很快;随着人们收入水平的提高,逐渐向次高收入群体 16
创新和市场开拓意识,是具有优秀业绩、技术水平高和管理能力强的专业人才,经营班子艰苦创业、团结奋斗、开拓进取,并聚集了一批行业内经验丰富的专业技术人员, 具有很强的管理优势。 ( 4) 人才资源和 劳动力优势 合肥是全国四大科教基地之一,科教资源丰富,拥有以中国科学技术大学、合肥工业大学等为代表的各类高等院校 53 所、以中国科学院合肥物质研究院、信息产业部 38 研究所、 43 研究所等为代表